Inventors:
Xuefeng Cheng - Milpitas CA, US
Xiaorong Xu - Menlo Park CA, US
Shuoming Zhou - Cupertino CA, US
Lai Wang - Cupertino CA, US
Ming Wang - San Jose CA, US
Feng Li - San Jose CA, US
Guobao Hu - San Jose CA, US
International Classification:
G01J005/02, A61B005/00
Abstract:
The invention generally relates to optical imaging systems and methods for providing images of two-dimensional or three-dimensional spatial or temporal distribution of properties of chromophores in a physiological medium. More particularly, the following description provides preferred embodiments of optical imaging systems utilizing efficient, real-time image construction algorithms. A typical optical imaging system includes at least one wave source, at least one wave detector, a movable member, an actuator member, and an imaging member. The wave source emits electromagnetic waves into a target area of the medium, and the wave detector detects electromagnetic waves and generates output signal in response thereto. The movable member includes the wave source and/or detector, and the actuator member moves the movable member along with the wave source and detector over different regions of the target area while the wave detector generates the output signal therefrom. The imaging member generates a set of voxels in the target area and calculates voxel values each of which represents a spatial or temporal average of the property of the chromophore in each voxel. The imaging member generates a set of cross-voxels from the intersecting voxels, and calculates cross-voxel values of the cross-voxels directly from the voxel values of the intersecting voxels. The imaging member then constructs the images of the chromophore properties in the target area. Accordingly, without needing to resort to the time-consuming conventional image reconstruction methods, the optical imaging system of the present invention can construct such images on a substantially real time basis.